HYBRID APPLICATIONS (I/III)

- Distributed Generation (<50MW)</p>
 - Grid Support at Substations
 - Building Power
 - Residential (renewable and non-renewable)
 - **✓** District
 - ✓ Individual
 - Commercial
 - Power Park
 - Industrial
 - CHP
 - Service Industry
 - Carwashes
- Restaurants
- Laundromats
- Hospitals
- Institutional
 - Universities
- Power Parks
- Power Parks
- Corporate Research Centers
- Remote and Rural Applications
- Waste Water Treatment Plant

HYBRID APPLICATIONS (II/III)

- Central Power Generation (>100 MW)
 - Baseload vs Peaking
- Mobile
 - Ship Power
 - Operational ship power
 - Ship hoteling while in port
 - **✓** Grid augmentation
 - Locomotive Power
 - Truck Hoteling
 - APU (approx 5 kW)
 - **✓** Hybrid (cycle advantages) or just fuel cell (small system)?
 - **✓** Grid augmentation
 - **✓** Discussion
 - Is there really a market here for hybrids?
 - Noise pollution can play a role
 - Truck stop could have hoteling support systems
 - RV Hoteling
 - Aircraft APU

HYBRID APPLICATIONS (III/III)

- Portable Generators
- Military
 - Radar Stations
 - Remote Command Centers
 - Portable Generators
- "Opportunity Fuel" Utilization
 - Agricultural Business
 - Wastewater
 - Landfill
 - Industrial byproduct fuels
- Co-Production of Chemical Byproducts

TECHNICAL BARRIERS (I/III)

- Grid Interaction, Interconnect
 - Inverters Power Quality
 - Voltage converters
 - Fault Tolerance
- Control Technology Issues
 - Capacity and Demand Management
 - Load Following (electrical and thermal)
 - Dynamic Performance
 - Efficiency over Load Profile
- CHP / CCHP
 - Lack of absorption chilling technology
 - Strategies for integrating into an institutional complex (standardization)
- Load Following (Electrical and Thermal)
- Fuel Conditioning/Processing
 - Fuel Composition Variability
 - Fuel compression
 - Fuel flexibility at affordable cost

TECHNICAL BARRIERS (II/III)

- CHP / CCHP
 - Lack of absorption chilling technology
 - Strategies for integrating into an institutional complex (standardization)
- Load Following (Electrical and Thermal)
- Codes & Standards
 - Mismatch between turbo machinery and pressure vessels
 - Interconnect
 - Fuel
 - **✓** Permitting (fire codes)
- Reliability, Availability, Maintainability, Durability (RAMD)
 - Availability of technically competent people
- Fuel
 - Sulfur content
 - Reforming (range of fuels)
 - **✓** fuel flexibility
- Performance Engineering
 - Startup Characteristics
 - Shut Down Characteristics
 - Multiple Skill Sets
 - IT: Monitoring/Dispatch; Operating Economics
 - Analyses: adequate software tools

TECHNICAL BARRIERS (III/III)

- Education / Information dissemination
 - Public
 - City / county officials
 - Workforce development
- Intrinsic Cost
 - Materials
 - Manufacturing
 - Installation
- Immature Technology
 - Lack of Product Availability
 - Supplier Infrastructure
 - Thermally Driven Cooling
 - Grid Interconnect Hardware and Standards
 - Unproven Reliability
 - No Track Record

MARKET BARRIERS (I/II)

- High Costs
 - Capital
 - Operational
 - **✓** Projected costs of energy (assumptions / scenarios)
 - **✓** Uncertainty of future costs (e.g. fuel)
- Political / Regulatory Barriers
 - Exit fees
 - Net metering
- Permitting Challenges
- Uncertainty in Safety
- CHP
 - Proving economic viability and reliability
 - Not Widely Accepted in U.S. Market
- Lack of Track Record, Demonstration Choices
 - Insurance / Risk Management
 - **✓** Lack for early projects / Ability to insure
- Inadequate Codes & Standards

MARKET BARRIERS (II/II)

- Need for Workforce Development
 - Servicing and Maintenance training
 - Installation
- Long Lead Time to Commercialization
- Formidable Competition
- Entrenched Interests
 - Utilities
 - Regulatory Agencies
 - Developers and Architects
- Lack of Awareness/Education
 - Public
 - City/County Officials

MARKET OPPORTUNITIES (I/II)

- Forcing Functions (Drivers)
 - Efficiency
 - Low Emissions
 - Flexible use of power
- Potential Benefits of CHP
- Large niche markets
 - Grid congestion relief / grid support
 - Emission restrictions
 - Aging T&D
 - Environmental Justice
 - Re-powering (aging power plants)
 - Central Plant: V21/Future Gen
 - H2 Co-production
 - Rural / remote power
- Potential reliability
- Security / Energy Independence
- Fuel Flexibility

MARKET OPPORTUNITIES (II/II)

- Costs Economic Arguments
 - Hybrid could bring down cost of fuel cell
 - Availability of incentive programs
 - Operational Benefits
 - **✓** Projected costs of energy (assumptions / scenarios)
 - **✓** Hedge uncertainty of future costs (e.g. fuel)